wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ+cosα=0=sinα+sinβ+sinα
prove that
cos2α+cos2β+cos2α=3α=sin2α+sin2β+sin2α

Open in App
Solution

Ifcosα+cosβ+cosγ=sinα+sinβ+sinγcosα+cosβ+cosγ=0........(1)sinα+sinβ+sinγ=0..........(2)Multiplying(2)×(i)andaddingto(1)(cosα+isinα)+(cosβ+isinβ)+(cosγ+isinγ)Letz1+z2+z3=01z1+1z2+1z3=(cosαisinα)+(cosβisinβ)+(cosγisinγ)=0z2z3+z3z1+z1z2=0Andz1+z2+z3=0,Squaringbothside,z21+z22+z23+2(z1z2+z2z3+z3z1)=0Orz21+z22+z23=0Or(cosα+isinα)2+(cosβ+isinβ)2+(cosγ+isinγ)2=0Orcos2α+isin2α+cos2β+isin2β+cos2γ+isin2γ=0Or2cos2(α1)=12sin2α=cos2αLikewise,sin2α+sin2β+sin2γ=cos2α+cos2β+cos2γ=32


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon