Given, k=cos2π3−cos(2π3+π3)+cos(2π3+2.π3)−cos(2π3+3π3)+....−cos(2π3+39.π3)
=cos2π3+cos(2π3+π+π3)+cos(2π3+2(π+π3))+....+cos(2π3+39(π+π3))
∴α=2π3,β=4π3 and n=40
k=sin(402.4π3)[cos(2π3+392.4π3)]sin(4π6)
=sin(80π3)cos(80π3)sin(2π3)=sin(160π3)2sin(2π3)=sin(53π+π3)2sin(2π3)=−12
⇒|6k|=∣∣∣6.(−12)∣∣∣=3