wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(x+y)=ysinx, then find dydx.

Open in App
Solution

Given
cos(x+y)=ysinx
Differentiating both sides with respect to x, we get
sin(x+y){1+dydx}=ycosx+sinxdydx
sin(x+y)sin(x+y)dydx=ycosx+sinxdydx
sin(x+y)dydxsinxdydx=ycosx+sin(x+y)
{sin(x+y)sinx}dydx=ycosx+sin(x+y)
dydx=ycosx+sin(x+y)sin(x+y)sinx.

1210962_1332864_ans_caebce1b978e47588140969d743fedcc.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon