If cosA=mcosB, then cotA+B2cotB−A2=
m+1m−1
Given:
cosA=mcosB⇒cosAcosB=m1⇒cosA+cosBcosB−cosB=m+1m−1⇒2cos(A−B2)cos(A+B2)−2sincos(B+A2)sin(B−A2)=m+1m−1⎡⎢⎣∵cosA+cosB=2cos(A−B2)cos(A+B2)and cosA−cosB=2sin(A+B2)cos(B−A2)⎤⎥⎦⇒cos(B−A2)cos(A+B2)sin(A−B2)sin(B−a2)=m+1m−1⇒cot(A+B2)cot(B−A2)=m+1m−1