We have
cosecA - SinA = m and
SecA - CosA = n
1/sinA - Sin = m and
1/cosA - cosA- = n
1 - sin²A/SinA = m and
1 - Cos²/CosA = n
cos² A/sinA = m and
Sin²A/CosA = n
(since; (1 - sin²A = cos² A and
1 - Cos² = Sin²A )
(mn²)⅔ + (m 2n)⅔ = (cos²A/sinA× sin⁴A/cos²A)⅔ + (cos4A/sin2A× sin2A/cosA)⅔
= (sin³A)⅔ + (cos³A)⅔
= (sin²A+cos²A) =1
Therefore (mn²)⅔ + (m²n)⅔ =1 (proved)
Hence L.H.S=R.H.S