1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
If θ=158 then...
Question
If
cot
θ
=
15
8
then
evaluate
1
+
sin
θ
1
-
sin
θ
1
+
cos
θ
1
-
cos
θ
.
Open in App
Solution
Given
:
cot
θ
=
15
8
Since
,
cot
θ
=
B
P
⇒
P
=
8
and
B
=
15
Using
Pythagoras
theorem
,
P
2
+
B
2
=
H
2
⇒
8
2
+
15
2
=
H
2
⇒
H
2
=
64
+
225
⇒
H
2
=
289
⇒
H
=
17
Therefore
,
sin
θ
=
P
H
=
8
17
cos
θ
=
B
H
=
15
17
Now
,
1
+
sin
θ
1
-
sin
θ
1
+
cos
θ
1
-
cos
θ
=
1
-
sin
2
θ
1
-
cos
2
θ
=
cos
2
θ
sin
2
θ
∵
sin
2
θ
+
cos
2
θ
=
1
=
cot
2
θ
=
15
8
2
=
225
64
Hence
,
1
+
sin
θ
1
-
sin
θ
1
+
cos
θ
1
-
cos
θ
=
225
64
.
Suggest Corrections
10
Similar questions
Q.
cot
θ
=
7
8
, then evaluate
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
.
Q.
If
sin
θ
(
1
+
sin
θ
)
+
cos
θ
(
1
+
cos
θ
)
=
x
and
sin
θ
(
1
−
sin
θ
)
+
cos
θ
(
1
−
cos
θ
)
=
y
, then
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ