1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
If θ -sinθ ...
Question
If
csc
θ
−
sin
θ
=
a
3
,
sec
θ
−
cos
θ
=
b
3
P.T
a
2
b
2
(
a
2
+
b
2
)
=
1
Open in App
Solution
csc
θ
−
sin
θ
=
a
3
⇒
cos
2
θ
sin
θ
=
a
3
⇒
sec
θ
−
cos
θ
=
b
3
⇒
sin
2
θ
cos
θ
=
b
3
a
4
b
2
+
a
2
b
4
=
cos
8
3
θ
sin
4
3
θ
⋅
sin
4
3
θ
cos
2
3
θ
+
cos
4
3
θ
sin
2
3
θ
⋅
sin
8
3
θ
cos
4
3
θ
=
cos
2
θ
+
sin
2
θ
=
1
∴
a
2
b
2
(
a
2
+
b
2
)
=
1
Suggest Corrections
1
Similar questions
Q.
If
csc
θ
−
sin
θ
=
a
3
and
sec
θ
−
cos
θ
=
b
3
, prove that
a
2
b
2
(
a
2
+
b
2
)
=
1
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1