If ddx(f(x))=1(1+x2), then ddx(f(x3))=
3x(1+x3)
3x2(1+x6)
-6x5(1+x6)2
-6x5(1+x6)
Find the value of ddx(f(x3)):
Given, ddx(f(x))=1(1+x2)
⇒∫ddx(f(x))dx=∫1(1+x2)dx
⇒ f(x)=tan-1x+C
⇒ f(x3)=tan-1x3+C
∴ddx(f(x3))=3x21+x6
Hence, Option ‘B’ is Correct.