The correct option is C (a)→(s),(b)→(s),(c)→(r),(d)→(q)
(a)
I=1∫−1[x+[x+[x]]] dx
We know that,
[x+n]=[x]+n ; if n is an integer
⇒I=31∫−1[x] dx⇒I=30∫−1−1 dx+31∫00 dx⇒I=−3
(a)→(s)
(b)
I=5∫2([x]+[−x]) dx
We know that,
[x]+[−x]={−1, if x is not an integer 0, if x is an integer
⇒I=−5∫21 dx=−3
(b)→(s)
(c)
3∫−1sgn (x−[x]) dx
We know that,
sgn (x−[x])={1, if x is not an integer0, if x is an integer
Hence,
3∫−1sgn (x−[x]) dx=4
(c)→(r)
(d)
I=25π/4∫0((tan6(x−[x])+tan4(x−[x])) dx
We know that,
0<x≤π4⇒[x]=0
⇒I=25π/4∫0tan6x+tan4x dx⇒I=25π/4∫0tan4x(tan2x+1) dx⇒I=25π/4∫0tan4xsec2x dx
Put tanx=t⇒sec2x dx=dt
⇒I=251∫0t4 dt⇒I=255=5
(d)→(q)