The correct option is D 10
Given polynomial is f(x)=2x3+ax2+bx+c ...(i)
Also, b + c = 2 ...(ii)
Here, 12 and 0 are zeroes of polynomial f(x).
Putting 0 in (i), we get
f(0)=2(0)3+a(0)2+b(0)+c=0
⇒ c = 0 …..(iii)
From (ii), we have
b + c = 2
⇒ b + 0 = 2
⇒ b = 2 ….. (iv)
Again, 12 is a zero of polynomial f(x), we get
f(12)=2×(12)3+a×(12)2+2×(12)+0=0 (∵b=2, c=0)
⇒ 2×18+a×14+1=0
⇒ a4+54=0
⇒ a=−5 ...(v)
∴ b(c−a)=2(0−(−5)) [From (iii), (iv) and (v)]
= 10
Hence, the correct answer is option (d).