If 3+2isinx1−2isinx is purely imaginary then x= ?
A complex number is said to be purely imaginary if z+¯¯¯z=0
If z=3+2isinθ1−2isinθ
then ¯¯¯z=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯3+2isinθ1−2isinθ=3−2isinθ1+2isinθ
z+¯¯¯z=3+2isinθ1−2isinθ+3−2isinθ1+2isinθ
So,3+2isinθ1−2isinθ+3−2isinθ1+2isinθ=0
(3+2isinθ)(1+2isinθ)+(3−2isinθ)(1−2isinθ)(1−2isinθ)(1+2isinθ)=0
3+6isinθ+2isinθ−4sin2θ+3−6isinθ−2isinθ−4sin2θ=0
6−8sin2θ=0
sin2θ=34
sinθ=√32=sinπ3
θ=nπ+(−1)n(π3)
sinθ=√32=sin−π3
θ=nπ+(−1)n(−π3)=nπ+(−1)n+1(π3)