Simplify a+3i2+ib=1−i
a+3i=(1−i)(2+ib)
a+3i=(2+b)+i(b−2)
By comparing both sides,
a=2+b
3=b−2
b=5
Put these values of a and b in left hand side of 5a−7b=0.
5(2+b)−7(5)
=5(2+(5))−7(5)
=0
=RHS
If A=[31−12], show that A2−5A+I=0.