We have,
a−iba+ib=1+i1−i
(a−ib)(1−i)=(a+ib)(1+i)
a−ai−ib+i2b=a+ai+ib+i2b
a−ai−ib−b=a+ai+ib−b
ai+ib=ai+ib
2ai+2bi=0
a+b=0
Hence, proved.