If dydx=2xy+2y⋅2x2x+2x+yloge2,y(0)=0, then for y=1, the value of x lies in the interval
A
(12,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(0,12]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(1,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(2,3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(1,2) dydx=2x(y+2y)2x(1+2yloge2) ⇒∫(1+2yloge2)dy(y+2y)=∫dx
For LHS put y+2y=t ⇒(1+2yloge2)dy=dt ⇒loge(y+2y)=x+c ∵y(0)=0 ∴c=0 ∴loge(y+2y)=x
If y=1 ⇒x=loge3 x∈(1,2)