wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xa=yb=zc, prove that

x2+a2x+a+y2+b2y+b+z2+c2z+c=(x+y+z)2+(a+b+c)2x+y+z+a+b+c.

Open in App
Solution

Let xa=yb=zc=k, so that x=ak,y=bk,z=ck;

Then x2+a2x+a=a2k2+a2ak+a=(k2+1)ak+1;

x2+a2x+a+y2+b2y+b+z2+c2z+c=(k2+1)ak+1+(k2+1)bk+1+(k2+1)ck+1

=(k2+1)(a+b+c)k+1

=k2(a+b+c)2+(a+b+c)2k(a+b+c)+(a+b+c)

=(ka+kb+kc)2+(a+b+c)2(ka+kb+kc)+a+b+c

=(x+y+z)2+(a+b+c)2x+y+z+a+b+c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon