Given : z−1z+1 is purely imaginary number, (z≠−1)
If α is purely imaginary number
α+¯¯¯¯α=0
So,
(z−1z+1)+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(z−1z+1)=0
⇒(z−1z+1)+(¯¯¯z−1¯¯¯z+1)=0
⇒(z−1)(¯¯¯z+1)+(z+1)(¯¯¯z−1)(z+1)(¯¯¯z+1)=0
⇒z¯¯¯z−¯¯¯z+z−1+z¯¯¯z+¯¯¯z−z−1(z+1)(¯¯¯z+1)=0
⇒2z¯¯¯z−2(z+1)(¯¯¯z+1)=0
⇒2z¯¯¯z−2=0 [∵z≠−1⇒ ¯¯¯z≠−1]
⇒z¯¯¯z=1
⇒|z|2=1 [∵z¯¯¯z=|z|2]
∴|z|=1 [∵|z|≥0]
Hence, the value of |z|=1