If (1+tan5∘)(1+tan10∘)(1+tan15∘)...(1+tan45∘)=2k, find the value of 'k' is
Open in App
Solution
We have tan(450−x)=1−tanx1+tanx (1+tan(450−x))−1=1−tanx1+tanx ⇒(1+tan(450−x))(1+tanx)=2 Consider, (1+tan5∘)(1+tan10∘)(1+tan15∘)...(1+tan45∘)=2k ⇒(1+tan5∘)(1+tan40∘)(1+tan10∘)(1+tan35∘)(1+tan15∘)(1+tan30∘)(1+tan20∘)(1+tan25∘)(1+tan45∘)=2k ⇒25=2k ⇒k=5