The correct option is D 513
Let S=2.22+3.23+4.24+...n.2n ...(1)
Multiply this by 2, we get
2S=2.23+3.24+4.25+...n.2n+1 ...(2)
(1)−(2), we get
−S=2.22+23+24+...+2n−n2n+1
⇒−S=2.22+23(2n−2−12−1)−n2n+1
⇒−S=2.23+2n+1−23−n2n+1⇒−S=−(n−1)2n+1,S=(n−1)2n+1∴2n+10=(n−1)2n+1⇒29=(n−1)⇒n=513