wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=cosue1ecosu, then show that tanθ2=±1+e1etan(u2).

Open in App
Solution

cosθ=cosue1ecosu

using trigonometric identities and simplifying

1tan2θ21+tan2θ2=1tan2u21+tan2u2e1e⎜ ⎜1tan2u21+tan2u2⎟ ⎟
1tan2θ21+tan2θ2=1tan2u2e(1+tan2u2)1+tan2u2e(1tan2u2)

Applying componendo and dividendo, we get

1tan2θ2+1+tan2θ21tan2θ21tan2θ2=1tan2u2e(1+tan2u2)+1+tan2u2e(1tan2u2)1tan2u2e(1+tan2u2)1tan2u2+e(1tan2u2)

tanθ2=±1+e1etanu2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon