If lz1mz2 is purely imaginary number, then ∣∣∣λz1+μz2λz1−μz2∣∣∣ is equal to
Let lz1mz2=0+iy⇒z1z2=mliy =|λz1+μz2λz1−μz2| dividing numerator & denominator by z2
=∣λz1z2+μλz1z2−μ|
=|λmliy+μλmiyl−μ|
=√μ2+(λmly)2√(−μ)2+λmly2 =1