If f(x)=limn→∞(2x+4x3+......+2nx2n−1)(0<x<1√2), then the value of ∫f(x)dx is equal to
When n→∞, f(x) becomes an infinites series of G.P. with a=2x, r=2x2
Hence, f(x)=2x1−2x2
Since, 0<x<1√2
So, the integral I=∫f(x)dx becomes ∫2x1−2x2dx
Substitute, 1−2x2=t⇒−4xdx=dt
After substitution, the integral becomes
−12∫dtt=−12log(t)+c
=−12log(1−2x2)+c
I=log(1√1−2x2)+c
Hence, option C.