The correct options are
A f(2)=f(−2)
C f′(2)+f′(−2)=0
Given, f(x−y),f(x),f(y) and f(x+y) are in AP
⇒f(x−y)+f(x+y)=2f(x)f(y) ....(1)
Substitute x=0,y=0 in (1)
⇒2f(0)=2f(0)f(0)
⇒f(0)(f(0)−1)=0
⇒f(0)=1(∵f(0)≠0 given)
Substitute x=0,y=x in (1), we get
f(−x)+f(x)=2f(0)f(x)
⇒f(−x)=f(x) ....(2)
⇒f(−2)=f(2),f(−3)=f(3)
Differentiating (2) w.r.t x
f′(−x)(−1)=f′(x)
f′(−x)+f′(x)=0
f′(−2)+f′(2)=0 and f′(−3)+f′(3)=0