If 1sin20o+1√3cos20o=2kcos40o, then 18k4+162k2+369 is equal to
Open in App
Solution
Given 1sin20o+1√3cos20o=2kcos40o ....(1) Consider,1sin20o+1√3cos20o =√3cos20o+sin20o√3sin20ocos20o =√32cos20o+12sin20o√34sin40o =sin60ocos20o+cos60osin20o(√3/4)sin40o =sin800√34sin400 =8√3cos40o So, by (1), we get k=4√3 ⇒3k2=16 So 18k4+162k2+369=1745.