The correct option is D 1, −1
Let α,β,γ,δ be the roots of x4−x3+x+1=0
Now let α=1+i√32 and β=1−i√32
As complex roots exists in conjugate pair.
Now α+β+γ+δ=1⇒1+γ+δ=1⇒γ+δ=0
Therefore, observing options
A) γ+δ=1+1=2
B) γ+δ=−1−1=−2
C) γ+δ=1+2=3
D) γ+δ=1−1=0
Hence, option D is correct answer.