If 66+66+66+66+66+6636+36+36÷46+46+46+4626+26=2n then find the value of n.
The correct option is A: 0
Given expression 6×663×36÷4×462×26=2n [∵a+a+a+a+a=5a]
⇒6737÷4727=2n [∵am×an=am+n, as 61×66=66+1=67]
⇒(63)7÷(42)7=2n
⇒27÷27=2n
⇒1=2n
⇒20=2n [∵a0=1]
∴n=0 [When bases are same, then power will be equal]