If e−1e+1=1a!+1b!+16!+...11!+1c!+1d!+... then find a+b−c+d
Open in App
Solution
We know, ex=1+x+x22!+x33!+........... ∴e=1+1+12!+13!+...........(i) and ∴e−1=1−1+12!−13!+...........(ii) Now e−1e+1=e−1e+1.e−1e−1=e2+1−2ee2−1 =e+e−1−2e−e−1=12!+14!+16!+........11!+13!+15!+........, using (i) and (ii)