Since
a>0,b>0 &
c>0Given
logeab−c=logebc−a=logecc−b
⇒(b+c)logeab2−c2=(c+a)logebc2−a2=(a+b)logeca2−b2=k(say)
⇒(b+c)logea=k(b2−c2) ....(1)
(c+a)logeb=k(c2−a2) ....(2)
(a+b)logec=k(a2−b2) ......(3)
Adding these equations, we get
(b+c)logea+(c+a)logeb+(a+b)logec=k(b2−c2+c2−a2+a2−b2)
⇒(b+c)logea+(c+a)logeb+(a+b)logec=0
∴logeab+c+logebc+a+logeca+b=0,[∵xloga=logax]
⇒loge(ab+c.bc+a.ca+b)=0,[∵loga+logb+logc=log(abc)]
⇒ab+c.bc+a.ca+b=1 ........(4)
AgainA.M.≥G.M.
ab+c+bc+a+ca+b3≥(ab+cbc+aca+b)1/3=(1)1/3=1, using (4)
⇒ab+c+bc+a+ca+b≥3. [Hence proved]