wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4αa+cos4αb=1a+b then show that sin8αa3+cos8αb3=1(a+b)3.

Open in App
Solution

sin4αa+cos4αb=1a+b
sin4αa+(1sin2α)2b=1a+b
bsin4α+a(1+sin4α2sin2α)=1a+b
bsin4α+a+asin4α2asin2α=1a+b
(a+b)sin4α2asin2α=1a+ba
(a+b)sin4α2asin2α=1aba2a+b
sin2α=a(a+b),cos2α=b(a+b)
sin8αa3+cos8αb3=a(a+b)4+b(a+b)4=1(a+b)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon