If I=∫(2x−3)1/2(2x−3)1/3+1dx =3[17(2x−3)7/6−15(2x−3)5/6+13(2x−3)1/2−(2x−3)1/6+g(x)]+C then g(x) is equal to
A
tan−1(2x−3)1/6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2x−3)1/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3tan−1(2x−3)1/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4(2x−3)1/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Atan−1(2x−3)1/6 Let I=∫√2x−33√2x−3+1dx Put u=2x−3⇒du=2dx I=12∫√u3√u+1du Put s=6√u⇒ds=16u56du ∴I=3∫s8s2+1ds=3∫(s6−s4+s2+1s2+1−1)ds =3s77−3s55+s3−3s+3tan−1s+c =3u767−3u565+√u−36√u+3tan−16√u+c =37(2x−3)76−35(2x−3)56+√2x−3−36√2x−3+3tan−16√2x−3+c