If I=∫(x1/3+(tanx)1/3)dx=A512logt4=t2+1(t2+1)2+√32tan−1(2t2−12√3)+34(tan−1t3)4+C where t3=tanx then A is equal to
A
128
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
138
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
118
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
120
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 128 Let I=∫(3√x+3√tanx)dx=I1+I2 Where I1=∫3√xdx=3x4/34 And I2=∫3√tanxdx Put y=tanx⇒dy=sec2xdx I2=∫3√yy2+1dy Put u=3√y⇒du=13y2/3dy I2=3∫u3u6+1du Put s=u2⇒ds=2udu I2=32∫ss3+1ds=32(∫s+13(s2−s+1)ds−∫13(s+1)ds)=12∫2s−12(s2−s+1)ds+34∫1(s2−s+1)ds−12∫1s+1=14log(s2−s+1)−12log(s+1)+√32tan−1(2s−1√3) Hence I=14log∣∣
∣∣t4−t2+1(t2+1)2∣∣
∣∣+√32tan−1(2t2−12√3)+34(tan−1t3)4 Therefore A=128