The correct option is D (18,13)
Given,I=∫10x5√1+x21−x2Letx2=tthen,2xdu=dt⇒xdx=dt2Hence,I=∫10t2√1+t1−tdt2=12∫10t2(1+t)√1−t2dt=12∫10t2√1−t2dt+12∫12t3√1−t2dtLett=sinθthendt=cosθdθ=12∫π20sin2θdθ+12∫π20(1−cos2x)sinθdθ=14∫π20(1−cos2θ)dθ+12∫π20−cosθdθ+12∫π20cos3θ3dθ=12∫π20θdθ−∫π20sin2θdθ+12−12+13=π8+12−16=π8+3−16=π8+13Now,mπ+n=(18,13)Hence,theoptionDisthecorrectanswer.