If ∫cosecnxdx=−cosecn−2xcotxn−1+A∫cosecn−2xdx then A is equal to
A
1n−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nn−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n−1n−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n−2n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dn−2n−1 In=∫cosecnx=∫cosecn−2xcosec2xdxu=cotxdu=−cosec2xdxIn=−∫cosecn−2xd(cotx)In=−cosecn−2xcotx+∫(cot2x)(n−2)cosecn−2xdxIn=−cosecn−2xcotx+∫(cosec2x−1)(n−2)cosecn−2xdxIn=−cosecn−2xcotx−(n−2)In+(n−2)In−2In=−cosecn−2xcotxn−1+n−2n−1In−2