If ∫dθ(cos2θ(tan2θ+sec2θ)=λtanθ+2loge|f(θ)|+C where C is constant of integration, then the ordered pair (λ,f(θ)) is equal to:
A
(−1,1−tanθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(−1,1+tanθ)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(1,1+tanθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−1,1−tanθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(−1,1+tanθ) Let I=∫dθcos2θ(sec2θ+tan2θ)
I=∫sec2θdθ(1+tan2θ1−tan2θ)+(2tanθ1−tan2θ)
I=∫(1−tan2θ)(sec2θ)dθ(1+tanθ)2
Let tanθ=k⇒sec2θdθ=dk I=∫(1−k2)(1+k)2dk=∫(1−k)(1+k)dk I=(21+k−1)dk I=2ln|1+k|−k+c I=2ln|1+tanθ|−tanθ+c
Given I=λtanθ+2logf(θ)+c ∴λ=−1,f(θ)=1+tanθ