If ∫dxsinxcos3x=ln|f(x)|+g(x)+C, then the number of solution(s) of the equation g(x)−f(x)=0 in [0,(2n+1)π2],(n∈W) is
A
(n+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2n+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(n+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2(n+1) I=∫dxsinxcos3x=∫dxsinxcosx×cos4x=∫sec4xdxtanx
Substituting tanx=z ⇒sec2xdx=dz ∴I=∫(1+z2z)dz=∫(1z+z)dz =ln|z|+z22+C=ln|tanx|+tan2x2+C ⇒f(x)=tanx,g(x)=tan2x2 ∴ the equation g(x)−f(x)=0 ⇒tan2x2−tanx=0 ⇒tanx(tanx−2)=0⇒tanx=0,tanx=2
number of solutions for tanx=0 in [0,(2n+1)π2] =(n+1)
number of solutions for tanx=2 in [0,(2n+1)π2]=(n+1)
Total number of solutions =2(n+1)