If ∫(cos3x+cos5x)(sin2x+sin4x)dx=Asinx+Bcosecx+Ctan−1(sinx)+K, then the value of A+B−C is equal to
(where A,B,C are fixed constants and K is constant of integration)
Open in App
Solution
Let I=∫(cos3x+cos5x)(sin2x+sin4x)dx ⇒I=∫(cos2x+cos4x)(sin2x+sin4x)cosxdx
Put sinx=t ⇒cosxdx=dt ∴I=∫(1−t2)+(1+t4−2t2)t2+t4dt ⇒I=∫t4−3t2+2t2(t2+1)dt ⇒I=∫[1+(2−4t2)t2(t2+1)]dt ⇒I=∫1⋅dt+2∫(t2+1)−t2t2(t2+1)dt−4∫1t2+1dt ⇒I=∫1⋅dt+2∫1t2dt−6∫1t2+1dt ⇒I=t−2t−6tan−1(t)+K ⇒I=sinx−2sinx−6tan−1(sinx)+K ⇒A=1,B=−2 and C=−6 ∴A+B−C=5