wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinxsin(xα)dx=Ax+Blogsin(xα)+c then find the value of (A,B)

Open in App
Solution

sinxsin(xα)dx=Ax+Blogsin(xα)+c
Differentiating w.r.t to x both sides, we get
sinxsin(xα)=A+Bcos(xα)sin(xα)
sinx=Asin(xα)+Bcos(xα)
sinx=A(sinxcosαcosxsinα)+B(cosxcosα+sinxsinα)
sinx=sinx(Acosα+Bsinα)+cosx(BcosαAsinα)
Now solving Acosα+Bsinα=1 and BcosαAsinα=0
Bcosα=Asinα
B=Asinαcosα
Substituting the value of B=Asinαcosα in Acosα+Bsinα=1 we get
Acosα+Asinαcosα×sinα=1
Acos2α+Asin2α=cosα
A(cos2α+sin2α)=cosα
A=cosα
Substitute A=cosα in BcosαAsinα=0
Bcosαcosα×sinα=0
Bcosα=cosα×sinα
B=sinα
Hence (A,B)=(cosα,sinα)



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon