If ∫tanxsecx+tanxdx=I+x+c where c is an arbitary constant, then the value of I is
A
secx−tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
secx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2log(secx2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12log(secx+tanx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Asecx−tanx ∫tanxsecx+tanxdx=∫tanx(secx+tanx)(secx−tanx)(secx−tanx)dx=∫secxtanx−tan2x(sec2x−tan2x)dx ∵sec2x−tan2x=1 =∫secxtanxdx−∫tan2xdx =∫secxtanxdx−∫(sec2x−1)dx=secx−tanx+x+c