wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If e2xsin3xdx=e2xA(2sin3x3cos3x)+c, then A is

Open in App
Solution

We have, u.v dx=uv dx (dudxv dx)dx .......... Integration by parts

Let I=e2xsin3xdx

=e2x(cos3x3)2e2x(cos3x3)dx .......... Integration by parts

=13e2xcos3x+23e2xcos3xdx

=13e2xcos3x+23[e2xsin3x32e2xsin3x3dx] .......... Integration by parts

=13e2xcos3x+29e2xsin3x49e2xsin3xdx

=13e2xcos3x+29e2xsin3x49I

I+49I=e2x9(2sin3x3cos3x)139I=e2x9(2sin3x3cos3x)

I=e2x13(2sin3x3cos3x)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon