The correct option is A 15
Given, ∫x+3√x2+6√xx(1+3√x)dx=k1x1k+k2tan−1m√x+C ....(1)
Let I=∫x+(x2)13+(x)16x(1+(x)13)dx
Here L.C.M. of 3 & 6 is 6 so putting x=t6
⇒dx=6x5dt
∴I=6∫(t6+t4+t)t6(1+t2)t5dt
=6∫t5+t3+11+t2dt
=6∫t3dt+6∫11+t2dt
=32t4+6tan−1t+C
I=32x2/3+6tan−1(x)1/6+C
Comparing with (1), we get
k1=32,k2=6,m=6
∴2k1+k2+m=3+6+6=15