Given : ∫{sin(101x)⋅sin99x}dx=sin(100x)(sinx)25λ10μ+C⋯(i)
Now, L.H.S.=∫{sin(101x)⋅sin99x}dx=∫{sin(100x+x)⋅sin99x}dx=∫{sin(100x)⋅cosx+cos(100x)sinx}(sinx)99dx=∫sin(100x)⋅cosx⋅sin99xdx+∫cos(100x)sin100xdx=I1+I2⋯(ii)
In first integral, applying integration by part , by taking u=sin(100x),v=cosx⋅sin99x
As,∫v⋅dx=∫sin99x⋅d(sinx)=sin100x100
⇒I1=sin(100x)⋅sin100x100−∫cos(100x)sin100xdx
⇒I1=sin(100x)⋅sin100x100−I2
Substituting in (ii):
⇒L.H.S=sin(100x)⋅sin100x100
Comparing with R.H.S. of (i):
We get, λ=4,μ=10
∴λ+μ=14