The correct options are
A 182,5,4
C 182,−5,−4
let , I=∫xe−5x2sin(4x2)dx
put t=x2⇒dt=2xdx
I=12∫e−5tsin(4t)dt
let , K=∫e−5tsin(4t)dt
using integration by parts,
=e−5t∫sin(4t)dt−∫(−5e−5t)∫sin(4t)dt
=−e−5tcos(4t)4−54∫e−5tcos(4t)dt
using integration by parts again,
=−e−5tcos(4t)4−54[e−5tsin(4t)4+54∫e−5tsin(4t)dt]
K=−e−5tcos(4t)4−516e−5tsin(4t)−2516K
K=−141e−5t(4cos(4t)+5sin(4t))
K=−141e−5t(4cos(4t)+5sin(4t))
substituting t=x2
I=12K=−182e−5x2(4cos(4x2)+5sin(4x2))
Threrefore , A=5 K=−182