The correct option is D −966
Given, ∫xe−5x2sin4x2dx=Ke−5x2(Asin4x2+Bcos4x2)+C.
Let I=∫xe−5x2sin4x2dx.
Put x2=t.
⇒xdx=dt2
⇒I=12∫e−5tsin4tdt
Using Integration by parts, we get
=12[sin4te−5t−5−∫4cos4te−5t−5dt]
=−110e−5tsin4t+410∫e−5tcos4tdt
=−110e−5tsin4t+410[cos4te−5t−5−∫(−4)sin4te−5t−5.dt]
⇒I=−110e−5tsin4t−225cos4t.e−5t−825I+C
⇒3325I=−110e−5tsin4t−225cos4t.e−5t+C
I=−566e−5x2sin4x2−233e−5x2cos4x2+C
I=e−5x2[−566sin4x2−233cos4x2]+C
On comparing with given expression,
A=−566,B=−233
∴A+B=−966