If (1+x+x2)20=40∑r=0arxr ,then the value ofa1+a3+a5+⋯a37 equals
If (1+x+2x2)20=a0+a1+a2x2+...+a40x40, then a1+a3+a5+...+a37 equals :
Let (1+x−2x2)20=∑40r=0arxr. then a1+a3+a5+....+a39 is equal to:
If a1+2a2+3a3=1, where a1,a2&a3 are all positive numbers; then what is the minimum value of 2a1+4a2+8a3?