wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (x+iy)3=u+iv, then show that ux+vy=4(x2y2).

Open in App
Solution

(x+iy)3=u+iv

x3+(iy)3+3.x.iy(x+iy)=u+iv [(a+b)3=a3+3ab(a+b)+b3]

x3+i3y3+3x2yi+3xy2i2=u+iv

x3iy3+3x2yi3xy2=u+iv

(x33xy2)+i(3x2yy3)=u+iv

On equating real and imaginary parts, we obtain

u=x33xy2,v=3x2yy3

ux+vy=x33xy2x+3x2yy3y

=x(x23y2)x+y(3x2y2)y

=x23y2+3x2y2

=4x24y2

=4(x2y2)

ux+vy=4(x2y2)

Hence, it proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon