Let L=limx→3(f(x)g(x))
⇒lnL=limx→3g(x)⋅ln(limx→3f(x))
limx→3f(x)=limx→3(√2x+3−x√x+1−x+1)
Rationalising the numerator and denominator,
limx→3f(x)
=limx→3((√2x+3−x)(√2x+3+x)(√x+1+(x−1))(√x+1−(x−1))(√2x+3+x)(√x+1+(x−1)))=limx→3((2x+3−x2)(√x+1+(x−1))(x+1−(x−1)2)(√2x+3+x))=limx→323(2x+3−x23x−x2)=23limx→3(x2−2x−3x(x−3))=23limx→3((x−3)(x+1)x(x−3))=23(43)=89
Now, limx→3g(x)
=limx→3x−1−√x2−5x2−5x+6
Again rationalising the numerator, we get
limx→3g(x)
=limx→3(x−1−√x2−5)(x−1+√x2−5)(x2−5x+6)(x−1+√x2−5)=limx→3(x2−2x+1−x2+5)(x−2)(x−3)(x−1+√x2−5)=limx→3−2(x−3)(x−2)(x−3)(x−1+√x2−5)=limx→3−2(x−2)(x−1+√x2−5)
=−2(1)(4)=−12
∴L=(89)−1/2
=32√2=3√24
Hence, the least value of a2+b2+c2 is32+22+42=29