wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

If limx3(2x+3xx+1x+1)x1x25x25x+6 can be expressed in the form abc where a,b,cN, then the least value of a2+b2+c2 is

Open in App
Solution

Let L=limx3(f(x)g(x))
lnL=limx3g(x)ln(limx3f(x))

limx3f(x)=limx3(2x+3xx+1x+1)
Rationalising the numerator and denominator,
limx3f(x)
=limx3((2x+3x)(2x+3+x)(x+1+(x1))(x+1(x1))(2x+3+x)(x+1+(x1)))=limx3((2x+3x2)(x+1+(x1))(x+1(x1)2)(2x+3+x))=limx323(2x+3x23xx2)=23limx3(x22x3x(x3))=23limx3((x3)(x+1)x(x3))=23(43)=89

Now, limx3g(x)
=limx3x1x25x25x+6
Again rationalising the numerator, we get
limx3g(x)
=limx3(x1x25)(x1+x25)(x25x+6)(x1+x25)=limx3(x22x+1x2+5)(x2)(x3)(x1+x25)=limx32(x3)(x2)(x3)(x1+x25)=limx32(x2)(x1+x25)
=2(1)(4)=12

L=(89)1/2
=322=324
Hence, the least value of a2+b2+c2 is32+22+42=29

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon