The correct option is B 13(√7−2)
sinα+cosα=√72 ...... (i)
Now, sin2θ=2tanθ1+tan2θ and cos2θ=1−tan2θ1+tan2θ
∴2tanα21+tan2α2+1−tan2α21+tan2α2=√72
2[2tanα2+1−tan2α2]=√7[1+tan2α2]
4tanα2+2−2tan2α2=√7+√7tan2α2
tan2α2[√7+2]−4tanα2+[√7−2]=0
∴tanα2=4±√16−4[3]2[√7+2]
tanα2=4±22[√7+2]=2±1√7+2
tanα2=3√7+2 , tanα2=1√7+2 (on rationalising)
tanα2=3[√7−2]3 , tanα2=√7−23
tanα2=√7−2 , tanα2=√7−23
√7−2 is rejected ∵0<α<π6
So, 0<π2<π12
∴tan[α2]=13[√7−2]