wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If p2=a2cos2θ+b2sin2θ then d2pdθ2+p is equal to (ab)

A
a2b2p4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2b2p2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
abp
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a2b2p3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C a2b2p3
p2=a2cos2θ+b2sin2θ
dpdθ2p=2a2cosθsinθ+2b2sinθcosθ
dpdθ=a2cosθsinθ+b2sinθcosθp
dpdθ=a2cosθsinθ+b2sinθcosθa2cos2θ+b2sin2θ
d2ydθ2=(a2cosθsinθ+b2cosθsinθ)(2a2cosθsinθ+2b2cosθsinθ)2(a2cos2θ+b2sin2θ)
+a2(cos2θsin2θ)+b2(cos2θsin2θ)a2cos2θ+b2sin2θ
d2pdθ2+p=a2b2p3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon