The correct option is C 5
p=log245175
⇒p=log175log245=log(52)7log(72)5=log7+2log52log7+log5
[∵logab=logbloga,log(ab)=loga+logb,logam=mloga]
q=log1715875
⇒q=log875log1715=log(53)7log(73)5=log7+3log53log7+log5
On substituting log5=α and log7=β, we get
p=2α+βα+2β and q=3α+βα+3β
Therefore, 1−pqp−q=(α+2β)(α+3β)−(2α+β)(3α+β)(2α+β)(α+3β)−(α+2β)(3α+β)
⇒1−pqp−q=−5(α2−β2)−(α2−β2)=5
Ans: D