The correct option is A none of these
ϕ(x)=∫cot4xdx+13cot3x−cotx
Now, ∫cot4xdx
=∫cot2x(csc2x−1)dx
=∫cot2xcsc2xdx−∫cot2xdx
Put cotx=t
⇒−csc2xdx=dt
=∫−t2dt−∫(csc2x−1)dx
=−t33+cotx+x+C
=−cot3x3+cotx+x+C
ϕ(x)=−cot3x3+cotx+x+C+13cot3x−cotx
Hence, ϕ(x)=x+C
ϕ(π2)=π2+C
⇒C=0 (∵ϕ(π2)=π2given)
Hence, ϕ(x)=x