wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinα+cosα=m, then sin6α+cos6α=

A
4+3(m21)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3+4(m21)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
43(m21)24
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
43(m2+1)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 43(m21)24
sin6α+cos6α
=(sin2α)3+(cos2α)3
=(sin2α+cos2α)(sin4α+cos4αsin2αcos2α)
Now
sin2α+cos2α=1
Hence
(sin2α+cos2α)(sin4α+cos4αsin2αcos2α)
=(sin4α+cos4αsin2αcos2α)
=((sin2α+cos2α)22sin2αcos2αsin2αcos2α)
=(13sin2αcos2α) ....(i)
Now it is given that
sinα+cosα=m
(sin2α+cos2α)=1
sin2α+cos2α+2sinα.cosα=m2
1+2sinα.cosα=m2
m21=2sinα.cosα
m212=sinα.cosα
(sinα.cosα)2=(1m2)24
Hence from i
(13sin2αcos2α)
=13(1m2)24
=43(1m2)24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon