Sign of Trigonometric Ratios in Different Quadrants
If sinα+cos...
Question
If sinα+cosα=m, then sin6α+cos6α=
A
4+3(m2−1)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3+4(m2−1)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4−3(m2−1)24
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4−3(m2+1)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B4−3(m2−1)24 sin6α+cos6α =(sin2α)3+(cos2α)3 =(sin2α+cos2α)(sin4α+cos4α−sin2αcos2α) Now sin2α+cos2α=1 Hence (sin2α+cos2α)(sin4α+cos4α−sin2αcos2α) =(sin4α+cos4α−sin2αcos2α) =((sin2α+cos2α)2−2sin2αcos2α−sin2αcos2α) =(1−3sin2αcos2α) ....(i) Now it is given that sinα+cosα=m (sin2α+cos2α)=1 sin2α+cos2α+2sinα.cosα=m2 1+2sinα.cosα=m2 m2−1=2sinα.cosα m2−12=sinα.cosα (sinα.cosα)2=(1−m2)24 Hence from i (1−3sin2αcos2α) =1−3(1−m2)24 =4−3(1−m2)24